

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

External sorting

Exercise 1: Answer the following questions for each of these scenarios, assuming that
our most general external sorting algorithm is used:

1. (a) A file with 10,000 pages and three available buffer pages.
2. (b) A file with 20,000 pages and five available buffer pages.
3. (c) A file with 2,000,000 pages and 17 available buffer pages.

1. How many runs will you produce in the first pass?
2. How many passes will it take to sort the file completely?
3. What is the total I/O cost of sorting the file?
4. How many buffer pages do you need to sort the file completely in just two

passes?

Exercise 1 Solution: The answer to each question is given below.
1. In the first pass (Pass 0), N/B runs of B pages each are produced, where N is the
number of file pages and B is the number of available buffer pages:
(a) 10000/3 = 3334 sorted runs.
(b) 20000/5 = 4000 sorted runs.
(c) 2000000/17 = 117648 sorted runs.

2. The number of passes required to sort the file completely, including the initial sorting
pass, is logB-1N1 + 1, where N1 = N/B is the number of runs produced by Pass 0:

(a) log23334 + 1 = 13 passes. (b) log44000 + 1 = 7 passes. (c) log16117648 + 1 = 6

passes.

3. Since each page is read and written once per pass, the total number of page I/Os for
sorting the file is 2 ∗ N ∗ (#passes):

(a) 2*10000*13 = 260000.
(b) 2*20000*7 = 280000.
(c) 2*2000000*6 = 24000000.

4. In Pass 0, N/B runs are produced. In Pass 1, we must be able to merge this many runs;
i.e., B − 1 ≥ N/B. This implies that B must at least be large enough to satisfy B ∗ (B − 1)
≥ N; this can be used to guess at B, and the guess must be validated by checking the first
inequality. Thus:

(a) With 10000 pages in the file, B = 101 satisfies both inequalities, B = 100 does not, so
we need 101 buffer pages.
(b) With 20000 pages in the file, B = 142 satisfies both inequalities, B = 141 does not, so
we need 142 buffer pages.

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

(c) With 2000000 pages in the file, B = 1415 satisfies both inequalities, B = 1414 does
not, so we need 1415 buffer pages.

Query processing

Exercise 2: Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E You are given the following
information:

Executives has attributes ename, title, dname, and address; all are string fields of the
same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.

There are 10 tuples per page. There are 10 buffer pages.

Consider the optimized version of the sorting-based projection algorithm: The initial
sorting pass reads the input relation and creates sorted runs of tuples containing only
attributes ename and title. Subsequent merging passes eliminate duplicates while
merging the initial runs to obtain a single sorted result (as opposed to doing a separate
pass to eliminate duplicates from a sorted result containing duplicates). The cost metric
is the number of page I/Os unless otherwise noted, and the cost of writing out the result
should be uniformly ignored.

1. How many sorted runs are produced in the first pass? What is the average length
of these runs? What is the I/O cost of this sorting pass?

2. How many additional merge passes are required to compute the final result of the
projection query? What is the I/O cost of these additional passes?

3. (a) Suppose that a clustered B+ tree index on title is available. Is this index likely
to offer a cheaper alternative to sorting? Would your answer change if the index
were unclustered?
(b) Suppose that a clustered B+ tree index on ename is available. Is this index likely
to offer a cheaper alternative to sorting? Would your answer change if the index
were unclustered?

c) Suppose that a clustered B+ tree index on <ename, title> is available. Is this
index likely to offer a cheaper alternative to sorting? Would your answer change
if the index were unclustered?

4. Suppose that the query is as follows:
SELECT E.title, E.ename FROM Executives E

That is, you are not required to do duplicate elimination. How would your answers
to the previous questions change?

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

Exercise 2 solution:

1. The first pass will produce N1 = N/Bu runs of B pages each, where B = 10 and
N = 5000 (we project the half of the relation, 10000/2). Therefore, the first pass
produces 5000/10=500 sorted runs of 10 pages each, costing 15000 I/Os (i.e.,
reading 10000 and writing 5000 pages).

2. The number of additional merge passes is log B-1 N1, where B = 10 and N1 = 500.

Therefore, log9500u = 3 more passes are required to merge the 500 runs.
The first two merge passes need to read&write the number of pages, costing
2*2*5000=20000 I/Os. The third merge pass needs to read the number of pages,
costing 5000 I/Os (we omit writing in the last pass, as it produces the final result).

3. Since ename is a candidate key, it is not necessary to perform duplicate checking
for <title, ename> pairs.

(a) Using a clustered B+ tree index on title would reduce the cost to single scan or 10,000
I/Os. Using an unclustered index would cost up to 2500+100,000 (2500 is the I/O cost of
scanning the leaf level of the B+ tree, where 2500 = 10 000/4 as the relation has 4
attributes; and 10000 * tuples per page). Thus, an unclustered index would not be
cheaper.

(b) Using the clustered B+ tree on ename would be cheaper than sorting, in that the cost
of using the B+ tree would be 10,000 I/Os. An unclustered index would require up to:
2500 (scan of index) + 10000 * tuples per page I/Os and thus be more expensive than
sorting.

(c) Using a clustered B+ tree index on <ename, title> would also be more cost- effective
than sorting. An unclustered B+ tree over the same attributes would allow an index-only
scan, and would thus be just as economical as the clustered index. This method (both by
clustered and unclustered) would cost around 5000 I/O’s.

4. Knowing that duplicate elimination is not required, we can simply scan the relation and
discard unwanted fields for each tuple. This is the best strategy except in the case that an
index (clustered or unclustered) on <ename, title> is available; in this case, we can do an
index-only scan. (Note that even with DISTINCT specified, no duplicates are actually
present in the answer because ename is a candidate key. However, in the general case, a
query optimizer may fail to recognize this pattern and omit the duplicate elimination
step.)

Query optimization

Exercise 3: Consider a relation with this schema:

Employees (eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a hash
index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+ tree index on

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

<age, sal>. Each Employees record is 100 bytes long, and you can assume that each index
data entry is 20 bytes long. The Employees relation contains 10,000 pages, and each data
page contains 20 employee tuples. There are 11 buffer pages.
1. Consider each of the following selection conditions and, assuming that the reduction

factor (RF) for each term that matches an index is 0.1, compute the cost of the most
selective access path for retrieving all Employees tuples that satisfy the condition:
(a) sal > 100
(b) age = 25
(c) age > 20
(d) eid = 1000
(e) sal > 200 ∧ age > 30
(f) sal > 200 ∧ age = 20
(g) sal > 200 ∧ title =’CFO’
(h) sal > 200 ∧ age > 30 ∧ title =’CFO’

2. Suppose that, for each of the preceding selection conditions, you want to retrieve the
average salary of qualifying tuples. For each selection condition, describe the least
expensive evaluation method and state its cost.

3. Suppose that, for each of the preceding selection conditions, you want to compute the
average salary for each age group. For each selection condition, describe the least
expensive evaluation method and state its cost.

4. Suppose that, for each of the preceding selection conditions, you want to compute the
average age for each sal level (i.e., group by sal). For each selection condition, describe
the least expensive evaluation method and state its cost.

5. For each of the following selection conditions, describe the best evaluation method:
(a) sal > 200 ∨ age = 20
(b) sal > 200 ∨ title =’CFO’
(c) title =’CFO’ ∧ ename =’Joe’

Exercise 3 solution: The answer to each question is given below. Note that the
unclustered index (on <sal>) has a height of log1002000 = 2 (as the index fanout - the
number of index entries per page - is 100 and the number of leaf pages is 2000). To
calculate the fanout we do the following:

Pagesize = 20 tuples/page * 100 bytes/tuple = 2000bytes
2000/20(index data entry size which is given) = 100

Accordingly, clustered (<age, sal>) has a height of log504000 =3 (as the index fanout is 50
and the number of leaf pages is 4000).

1.
(a) sal > 100 For this condition, a filescan is the best option, since a clustered index does
not exist on sal. Using the unclustered index would accrue a cost of 2 (𝑙𝑜𝑜𝑘𝑢𝑝) +

 10,000 𝑝𝑎𝑔𝑒𝑠 ∗
20𝑏𝑦𝑡𝑒𝑠

100𝑏𝑦𝑡𝑒𝑠
 ∗ 0.1 for the B+ index scan plus 10,000 𝑝𝑎𝑔𝑒𝑠 ∗

 20 𝑡𝑢𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑔𝑒 ∗ 0.1 for the lookup = 20202, and would be inferior to the filescan
cost of 10000.

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

(b) age = 25 The clustered B+ tree index would be the best option here, with a cost of
3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 𝑝𝑎𝑔𝑒𝑠 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 1003. Although the hash index has a
lesser lookup time (roughly 1.2), the potential number of record lookups (10000 𝑝𝑎𝑔𝑒𝑠 ∗
 0.1 ∗ 20 𝑡𝑢𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑔𝑒 = 20000) renders the clustered index more efficient.

(c) age > 20 Again the clustered B+ tree index is the best of the options presented; the
cost of this is 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 𝑝𝑎𝑔𝑒𝑠 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 1003.

(d) eid = 1000 Since eid is a candidate key, one can assume that only one record will be in
each bucket. Thus, the total cost is roughly 1.2 (lookup) + 1 (record access) which is 2 or
3.

(e) sal > 200 ∧ age > 30. This case is similar to the age > 20 one when we first evaluate
the age > 20 clause and the cost is: 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 𝑝𝑎𝑔𝑒𝑠 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) =
 1003.

 (f) sal > 200 ∧ age = 20. Similar to the previous part, except now we do not need to scan
all matching index pages for age. We lookup for the first data page with age = 20, and start
scanning all data pages for sal > 200 until we reach age 21. Total cost: 3 (𝑙𝑜𝑜𝑘𝑢𝑝) +
 10000 𝑝𝑎𝑔𝑒𝑠 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 103.

(g) sal > 200 ∧ title = ‘CFO’ In this case, the filescan is the best available method to use,
with a cost of 10000.

(h) sal > 200 ∧ age > 30 ∧ title = ‘CFO’ Here an age condition is present, so the clustered
B+ tree index on < age,sal > can be used. Here, the cost is 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 𝑝𝑎𝑔𝑒𝑠 ∗
 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 1003.

2.
(a) sal > 100 Since the desired result is only the average salary, an index-only scan can be
performed using the unclustered B+ tree on sal for a cost of 2 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 ∗ 0.1 ∗
 0.2 (𝑑𝑢𝑒 𝑡𝑜 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 𝑡𝑢𝑝𝑙𝑒𝑠) = 202.

(b) age = 25 For this case, the best option is to use the clustered index on < age,sal > and
thus perform index-only scan. The cost of this operation is 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + (10000 ∗ 0.4) ∗
 0.1 = 403.

(c) age > 20 Similar to the age = 25 case, this will cost 403 using the clustered index.

(d) eid = 1000 Being a candidate key, only one relation matching this should exist. Thus,
using the hash index again is the best option, for a cost of 1.2 (hash lookup) + 1 (relation
retrieval) = 2.2.

(e) sal > 200 ∧ age > 30 Using the clustered B+ tree again as above is the best option, with
a cost of 403.

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

(f) sal > 200 ∧ age = 20 Similarly to the sal > 200 ∧ age = 20 case in the previous problem,
this selection should use the clustered B+ index for an index only scan, costing
3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 4000 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑔𝑒) ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑎𝑙) = 43.

(g) sal > 200∧title = ‘CFO’ In this case, an index-only scan may not be used, and individual
relations must be retrieved from the data pages. The cheapest method available is a
simple filescan, with a cost of 10000 I/Os.

(h) sal > 200 ∧ age > 30 ∧ title = ‘CFO’ Since this query includes an age restriction, the
clustered B+ index over < age,sal > can be used; however, the inclusion of the title field
precludes an index-only query. Thus, the cost will be: 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 𝑝𝑎𝑔𝑒𝑠 ∗
 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 1003.

3.
(a) sal > 100 The best method in terms of I/O cost requires usage of the clustered B+ index
over < age,sal > in an index-only scan. Also, this assumes the ability to keep a running
average for each age category. The total cost of this plan is: 10000 ∗ 0.4 (𝑖𝑛𝑑𝑒𝑥 −
𝑜𝑛𝑙𝑦 𝑠𝑐𝑎𝑛) = 4000. Note that although sal is part of the key, since it is not a prefix of the
key, the entire list of pages must be scanned.

(b) age = 25 Again, the best method is to use the clustered B+ index in an index-only scan.
For this selection condition, this will cost 3 (𝑎𝑔𝑒 𝑙𝑜𝑜𝑘𝑢𝑝) + 4000 𝑝𝑎𝑔𝑒𝑠 ∗
 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑛 𝑎𝑔𝑒) = 403.

(c) age > 20 This selection uses the same method as the previous condition, the clustered
B+ tree index over < age,sal > in an index-only scan, for a total cost of 403.

(d) eid = 1000 As in previous questions, eid is a candidate field, and as such should have
only one match for each equality condition. Thus, the hash index over eid should be the
most cost effective method for selecting over this condition, costing 1.2 (hash lookup) +
1 (tuple retrieval) = 2.2.

(e) sal > 200 ∧ age > 30 This can be done with the clustered B+ index and an index-only
scan over the < age,sal > fields. The total estimated cost is 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 4000 𝑝𝑎𝑔𝑒𝑠 ∗
 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑛 𝑎𝑔𝑒) = 403.

(f) sal > 200 ∧ age = 20 This is similar to the previous selection conditions, but even
cheaper. Using the same index-only scan as before (the clustered B+ index over < age,sal
>), the cost should be 3 + 10000 ∗ 0.4 ∗ 0.1 (𝑎𝑔𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) ∗
 0.1 (𝑠𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) = 43.

(g) sal > 200∧ title = ‘CFO’ Since we have a clustered < age,sal > index, we can use the
ordering of the data to answer this query with a simple filescan while keeping running
average for each age and each qualifying tuple.

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

(h) sal > 200 ∧ age > 30 ∧ title = ‘CFO’ Using the clustered B+ tree over < age,sal > would
accrue a cost of 3 + 10000 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑎𝑔𝑒) = 1003.

4.
(a) sal > 100 Since we only need sal and age attributes, the best operation involves
scanning the clustered index on <age, sal>, filtering on sal>100 and sorting the result. We
can do initial sorting pass using 10 buffers (because 1 is needed for scanning the index),
and the merging passes using 11 buffers (1 is used for output, so the base of the log in the
formula will be 10). Given the selectivity of the predicate result has 400 pages that can be

sorted in log10
400

10
= 2 passes. Finally, we do not need to write out the final result and we

can do the aggregation during the last pass. The final cost is: 4000 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥) +
 400 (𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑠𝑠) + 400 ∗ 2 ∗ 2 (𝑠𝑜𝑟𝑡𝑖𝑛𝑔) − 400 (𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡) = 5600.

(b) age = 25 This case is similar to the previous, only we can probe the clustered index
and then read the 400 qualifying pages.
Option 1: sort on sal the qualifying pages, where the cost is: 3 (𝑙𝑜𝑜𝑘𝑢𝑝) +
400 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥) + 400 (𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑠𝑠) + 400 ∗ 2 ∗ 2 (𝑠𝑜𝑟𝑡𝑖𝑛𝑔) −
400 (𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡) = 2003.
Option 2: Since the predicate states that age has value of 25, we could skip sorting, where
the cost is: 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 400 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥).

 (c) age > 20 Using the same approach as the previous case, the cost is 2003.

(d) eid = 1000 Being a candidate key, only one relation should match with a given eid
value. Thus, the estimated cost should be 1.2 (hash lookup) + 1 (tuple retrieval).

(e) sal > 200∧ age > 30 In this case, we can also use the clustered index on <age, sal>
similarly to the case b). We first probe to find first tuple satisfying age > 30, then scan the
400 qualifying pages and filter on the predicate sal > 200. The qualifying tuples can be
stored in 40 pages (4000 ∗ 0.1 (𝑎𝑔𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) ∗ 0.1 (𝑠𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)). Using other
10 buffers we can produce 4 sorted runs of 10 pages, which we can merge in one pass
during which we also perform aggregation. The total cost is: 3(𝑙𝑜𝑜𝑘𝑢𝑝) +
400 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥) + 40 (𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑠𝑠) + 40 (𝑚𝑒𝑟𝑔𝑖𝑛𝑔) = 483.

(f) sal > 200 ∧ age = 20 Similarly to 3f) we probe the clustered index on <age,sal> and
read the qualifying tuples from 40 pages of the index.
Option 1: sort on sal the qualifying page, where the cost is: 3(𝑙𝑜𝑜𝑘𝑢𝑝) +
400 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥) + 40 (𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑠𝑠) + 40 (𝑚𝑒𝑟𝑔𝑖𝑛𝑔).
Option 2: Since the predicate states that age has value of 20, we could skip sorting, where
the cost is: 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 40 (𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥) = 43.

(g) sal > 200 ∧ title = ‘CFO’ In this case, we need to do a filescan, perform the filters to find
10000 ∗ 20 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑎𝑙) ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡𝑖𝑡𝑙𝑒) = 2000 and project
sal and age attributes. These attributes require 40 pages. We can use 10 buffers to
generate the sorter runs that we can then merge and perform aggregation in another pass
for the total cost of: 10000 (𝑓𝑖𝑙𝑒𝑠𝑐𝑎𝑛) + 40 (𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑠𝑠) + 40 (𝑚𝑒𝑟𝑔𝑖𝑛𝑔) = 10080. If

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

we tried to use index on sal, we would need to scan all index pages that satisfy sal > 200
and retrieve all matching tuples for the cost of 2 (𝑙𝑜𝑜𝑘𝑢𝑝) + 2000 ∗ 0.1(𝑖𝑛𝑑𝑒𝑥 𝑠𝑐𝑎𝑛) +
10000 ∗ 20 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑎𝑙) = 20202. There are no additional costs because
aggregation can be done by keeping running averages while retrieving tuples.

(h) sal > 200 ∧ age > 30 ∧ title = ‘CFO’ In this case, the number of tuples that satisfy all 3
conditions is 10000 ∗ 20 ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑠𝑎𝑙) ∗ 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑔𝑒) ∗
0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡𝑖𝑡𝑙𝑒) = 200 We need two attributes, sal and age, sized 20 bytes
each, to compute the result and we can store 200 pairs of them on 4 buffer pages. This
means that contrary to previous cases, we can do the aggregation in memory (without
external sort). We can retrieve the matching values by probing the clustered index and
scanning the data pages for the cost of 3 (𝑙𝑜𝑜𝑘𝑢𝑝) + 10000 ∗
 0.1 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑎𝑔𝑒) = 1003

5.
(a) sal > 200∨ age = 20 In this case, a filescan would be the most cost effective, because
the most cost effective method for satisfying sal > 200 alone is a filescan.

(b) sal > 200 ∨ title = ‘CFO’ Again a filescan is the better alternative here, since no index
at all exists for title.

(c) title = ‘CFO’ ∧ ename = ‘Joe’ Even though this condition is a conjunction, the filescan is
still the best method, since no indexes exist on either title or ename.

Transactions

Exercise 4: Consider a database with objects X and Y and assume that there are two
transactions T1 and T2. Transaction T1 reads object X, and then writes objects Y and X.
Transaction T2 reads object X, then reads object X once more, and finally writes objects X
and Y (i.e. T1: R(X), W(Y), W(X); T2: R(X), R(X), W(X), W(Y))

1. Give an example schedule with actions of transactions T1 and T2 on objects X and
Y that results in a write-read conflict.

2. Give an example schedule with actions of transactions T1 and T2 on objects X and
Y that results in a read-write conflict.

3. Give an example schedule with actions of transactions T1 and T2 on objects X and
Y that results in a write-write conflict.

4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Exercise 4 solution: The answer to each question is given below.

1. The following schedule results in a write-read conflict:
T2:R(X), T2:R(X), T2:W(X), T1:R(X) ...
T1:R(X) is a dirty read here.

2. The following schedule results in a read-write conflict:
T2:R(X), T1:R(X), T1:W(Y), T1:W(X), T2:R(X) ...
Now, T2 will get an unrepeatable read on Y.

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

3. The following schedule results in a write-write conflict:
T1:R(X), T2:R(X), T2:R(X), T1:W(Y), T2:W(X), T1:W(X), T2:W(Y) ...
Now, the last values of X and Y are neither completely from T1 nor completely
from T2. This is write-write conflict.

4. Strict 2PL resolves these conflicts as follows:
(a) Here, T1 could not get a shared lock on X because T2 would be holding an
exclusive lock on X. Thus, T1 would have to wait until T2 was finished.
(b) Here, T1 could not get an exclusive lock on X because T2 would already be
holding a shared or exclusive lock on X.
(c) Here, T2 could not get an exclusive lock on X since T1 would already be holding
a shared lock on X.

Concurrency control

Exercise 5: Consider the following sequences of actions, listed in the order they are
submitted to the DBMS:

• Sequence S1: T1:R(X), T2:W(X), T2:W(Y), T3:W(Y), T1:W(Y), T1:Commit,
T2:Commit, T3:Commit

• Sequence S2: T1:R(X), T2:W(Y), T2:W(X), T3:W(Y), T1:W(Y), T1:Commit,
T2:Commit, T3:Commit

For each sequence and for Strict 2PL with deadlock detection (show the waits-for graph
in case of deadlock) concurrency control mechanism, describe how the concurrency
control mechanism handles the sequence. Assume that the timestamp of transaction Ti
is i. Use lock-based concurrency control mechanisms, and add lock and unlock requests
to the previous sequence of actions. The DBMS processes actions in the order shown. If
a transaction is blocked, assume that all its actions are queued until it is resumed; the
DBMS continues with the next action (according to the listed sequence) of an unblocked
transaction.

Exercise 5 solution: The answer to each question is given below.

1. In deadlock detection, transactions are allowed to wait; they are not aborted
until a deadlock has been detected.
Sequence S1: T1 gets a shared-lock on X;
T2 blocks waiting for an exclusive-lock on X;
T3 gets an exclusive-lock on Y;
T1 blocks waiting for an exclusive-lock on Y;
T3 finishes, commits and releases locks;
T1 wakes up, gets an exclusive-lock on Y, finishes up and releases lock on X and
Y;
T2 now gets both an exclusive-lock on X and Y, and proceeds to finish.
No deadlock.

CAS CS 460: Introduction to Database Systems
Fall 2019

Programming Assignment #2

Sequence S2: There is a deadlock. T2 waits for T1, while T1 waits for T2.
Deadlocks are resolved either using a timeout or by maintaining a waits-for
graph.

